SK텔레콤, SIGIR 2024에서 정보검색 분야 AI 기술 우수 논문상 수상
-
기사 스크랩
-
공유
-
댓글
-
클린뷰
-
프린트
지난달 정보 검색 분야 세계적 권위 학회에서 수상
'One Model 버전 2.0'의 알고리즘 우수성 인정받아
'One Model 버전 2.0'의 알고리즘 우수성 인정받아
SK텔레콤은 지난달 미국 워싱턴 DC에서 개최된 정보 검색 분야 세계적 권위 학회인 SIGIR 2024에서 자체 개발 추천 모델 알고리즘 연구가 우수 논문상을 받았다고 5일 밝혔다.
이번에 수상한 논문은 SK텔레콤의 'One Model 버전 2.0'에 관한 연구로, 다양한 서비스 도메인의 데이터가 서로 시너지를 내어 추천 예측 성능을 향상하는 알고리즘을 제안했다.
이 논문은 해당 알고리즘의 참신성, 상용 배포 실증성, 방대한 실험을 통한 결과의 신뢰성 등에서 높은 평가를 받아 접수 논문 중 상위 0.6%의 논문에만 수여되는 우수 논문상으로 선정되었다.
자체 개발 추천 모델인 One Model은 지난해에 버전 1.0을 개발하여 상용 배포하였으며, 해당 모델의 알고리즘 관련 연구는 정보 검색 분야 최우수 학회 중 하나인 CIKM 2023에 채택된 바 있다. 이번 One Model 버전 2.0은 버전 1.0 대비 추천 성능을 향상함과 동시에 학습 효율성을 높였다
SK텔레콤은 개인의 다양한 종류 행동 로그를 시간 순서에 따라 통합하거나 정제하고, 이번 연구 내용인 'One Model 알고리즘'을 통해 가입자의 다음 행동을 예측, 고객의 다차원적인 특성을 고려한 개인화 추천을 수행하고 있다.
예를 들어, 요금제 가입 이력, T딜 쇼핑 이력, 멤버십 사용 이력 등 가입자의 다양한 서비스 도메인에서의 행동 데이터를 종합적으로 분석하여, 가장 최근 시점에 해당 가입자의 니즈와 관심사에 맞는 서비스 혜택이나 상품을 추천하는 방식이다.
이러한 방식의 추천을 '다중 도메인 순차적 추천'이라 하며 One Model은 실제로 10개 이상의 서로 다른 데이터 도메인을 동시에 학습해 SK텔레콤 내 다양한 채널에서의 추천을 하나의 모델로 통합 제공하고 있다.
이 모델을 실제 적용해 본 결과, 기존 추천 방식 대비 최대 3배 이상 소비자의 반응률을 향상하는 효과를 보았다.
특히, 여러 서비스 도메인의 데이터를 효과적으로 활용하기 위해 단일 도메인 학습 모델(Pacer)과 다중 도메인 학습 모델(Runner)을 한 아키텍처로 구성해, 상호 보완하는 학습 방식을 고안했다.
현재 해당 모델은 SK텔레콤 인공지능(AI) 개인비서 서비스인 에이닷의 추천 시스템과 T멤버십, 요금제 추천에 적용되고 있고, 연내에는 구독 상품인 T우주와 AI 큐레이션 커머스 T딜 등 다양한 상품 추천에도 확대 적용될 예정이다.
정도희 SK텔레콤 AI서비스사업부 AI 데이터 담당은 "지난해에 이어 올해 역시 세계적인 권위의 학회에서 우수 논문상을 받으며 SK텔레콤의 AI 역량을 다시 한번 입증했다"며 "앞으로 고도화된 개인화 기술을 자사 서비스 곳곳에 적용해 고객만족도를 더 증가시키고 Global AI Company로의 진화를 가속화할 것"이라고 밝혔다.
유지희 한경닷컴 기자 keephee@hankyung.com
이번에 수상한 논문은 SK텔레콤의 'One Model 버전 2.0'에 관한 연구로, 다양한 서비스 도메인의 데이터가 서로 시너지를 내어 추천 예측 성능을 향상하는 알고리즘을 제안했다.
이 논문은 해당 알고리즘의 참신성, 상용 배포 실증성, 방대한 실험을 통한 결과의 신뢰성 등에서 높은 평가를 받아 접수 논문 중 상위 0.6%의 논문에만 수여되는 우수 논문상으로 선정되었다.
자체 개발 추천 모델인 One Model은 지난해에 버전 1.0을 개발하여 상용 배포하였으며, 해당 모델의 알고리즘 관련 연구는 정보 검색 분야 최우수 학회 중 하나인 CIKM 2023에 채택된 바 있다. 이번 One Model 버전 2.0은 버전 1.0 대비 추천 성능을 향상함과 동시에 학습 효율성을 높였다
SK텔레콤은 개인의 다양한 종류 행동 로그를 시간 순서에 따라 통합하거나 정제하고, 이번 연구 내용인 'One Model 알고리즘'을 통해 가입자의 다음 행동을 예측, 고객의 다차원적인 특성을 고려한 개인화 추천을 수행하고 있다.
예를 들어, 요금제 가입 이력, T딜 쇼핑 이력, 멤버십 사용 이력 등 가입자의 다양한 서비스 도메인에서의 행동 데이터를 종합적으로 분석하여, 가장 최근 시점에 해당 가입자의 니즈와 관심사에 맞는 서비스 혜택이나 상품을 추천하는 방식이다.
이러한 방식의 추천을 '다중 도메인 순차적 추천'이라 하며 One Model은 실제로 10개 이상의 서로 다른 데이터 도메인을 동시에 학습해 SK텔레콤 내 다양한 채널에서의 추천을 하나의 모델로 통합 제공하고 있다.
이 모델을 실제 적용해 본 결과, 기존 추천 방식 대비 최대 3배 이상 소비자의 반응률을 향상하는 효과를 보았다.
특히, 여러 서비스 도메인의 데이터를 효과적으로 활용하기 위해 단일 도메인 학습 모델(Pacer)과 다중 도메인 학습 모델(Runner)을 한 아키텍처로 구성해, 상호 보완하는 학습 방식을 고안했다.
현재 해당 모델은 SK텔레콤 인공지능(AI) 개인비서 서비스인 에이닷의 추천 시스템과 T멤버십, 요금제 추천에 적용되고 있고, 연내에는 구독 상품인 T우주와 AI 큐레이션 커머스 T딜 등 다양한 상품 추천에도 확대 적용될 예정이다.
정도희 SK텔레콤 AI서비스사업부 AI 데이터 담당은 "지난해에 이어 올해 역시 세계적인 권위의 학회에서 우수 논문상을 받으며 SK텔레콤의 AI 역량을 다시 한번 입증했다"며 "앞으로 고도화된 개인화 기술을 자사 서비스 곳곳에 적용해 고객만족도를 더 증가시키고 Global AI Company로의 진화를 가속화할 것"이라고 밝혔다.
유지희 한경닷컴 기자 keephee@hankyung.com