[2022학년도 논술길잡이] 출제 빈도 높은 수학적 귀납법 증명 문제

최준원의 수리 논술 강의노트
수학적 귀납법 증명 문제는 구조와 채점포인트가 비교적 명확하기 때문에 출제 빈도가 높고 변별력도 갖춘 수리논술의 주요 출제 유형이다. n=k일 때 가정한 식으로부터 n=k+1일 때의 식을 보이려고 하는 과정이 핵심 채점포인트이며 이때 가정한 식과 보이려는 식을 확실하게 구분해서 문장으로 표현하는 것이 중요하다.

포인트

최준원 프라임리더스 수리논술 대표강사
수리논술을 시작하는 수험생들은 수학, 수학Ⅰ, 수학Ⅱ의 기본 논증추론 과정을 직접 자신의 손으로 써보고 익히는 과정부터 시작해야 한다.